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With the d spacing data and an IBM 1620 computer we have 
refined the lattice parameters of or-MoO 3, and the values 
obtained are tabulated in Table 2. 

A probable explanation for the transformation may be 
that the sulphur and chlorine decomposed from MoSC1 and, 
on taking oxygen from the air, the compound a-MoO 3 was 
formed. 

The authors are grateful to Professor K. V. Krishna Rao, 
Head of the Department of Physics, Osmania University, for 
his interest in this work and to Dr C. Perrin of the Universit+ 
de Rennes, France, for supplying the sample used in this 
investigation. One of us (JSN) is grateful to the Council of 
Scientific and Industrial Research, New Delhi, for the award 
of a junior research fellowship. 
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The usual Bloch wave description of electron diffraction from higher-order Laue zones requires the solution of a 
quadratic eigenvalue equation. In this note we show that in the high-energy case this eigenvalue equation reduces to 
linear form. 

Recently there has been interest in the theoretical descrip- 
tion of high-energy electron diffraction, in the Laue 
geometry, from higher-order Laue zones. For instance, 
Buxton (1976) has used perturbation methods to study 
diffraction effects from non-zero Laue zones. In this note 
we demonstrate that the quadratic eigenvalue problem one 
obtains in Bloch wave descriptions of high-energy electron 
diffraction from higher Laue zones can be reduced to a 
linear eigenvalue problem. Before doing this we will 
comment on the validity of the Bloch formalism. 

Consider a planar crystal with a coordinate system such 
that the z axis is normal to the crystal surface and the xy 
plane is coplanar with the zero Laue zone. If this crystal is 
now assumed to be infinite in the xy plane, then the 
electrostatic potential in this plane can be expanded as a 
Fourier series. If we now restrict ourselves to a discussion 
of diffraction maxima that lie on the zero Laue zone then 
the Bloch formalism is rigorous. However, when we 
consider diffraction from higher-order Laue zones, prob- 
lems arise since the crystal is finite in the z direction. 
Expressing the potential in this direction as a Fourier series 
introduces an error whose magnitude is of the order of an 
atomic spacing divided by the thickness of the crystal. 
Keeping this fact in mind, we will proceed in the 
assumption that the crystal potential has a Fourier series 
and that the Bloch formalism is valid. 

We begin with the general eigenvalue equation of high- 
energy electron diffraction (Colella, 1972) which we write 
as det(A) = 0. The elements of A are written 

Ag h = {K 2 - [k(/') + g]Z}6g h + (1 - fieh) ug_e (1) 

where the k(j) are the unknown Bloch wave vectors, g is 
the reciprocal-lattice vector, and 6~h is the Kronecker delta 

function. The coefficients ug are related to the Fourier 
coefficients of the crystal potential by ug = 2mevg/h 2, and 
K 2 = 2meE/h 2 - e2E2/c2h 2 + Uo, where E is the potential 
difference through which the electron was initially accelerated 
prior to its incidence upon the crystal. Now let us transform 
(1) into a more convenient form by defining 

k(j)  = Z + yU)~2 (2) 

where X is the wave vector of the electron in vacuum and 
[&,[ = (2meE - e2E2/c2)l/2/h. Then, substituting (2) into (1) 
gives us 

2 [1+ 
(3) 

In principle, construction of the dispersion surface y(j), 
as a function of g for a given crystal potential, is 
straightforward. First, one selects n beams with the only 
restriction being that n > j .  Then one solves det (A) - -0 ,  
where A is an n x n matrix. The process is repeated, letting 
n --, m, until the eigenvalue converges. In practice, because 
v0/E _~ 10 -4 for 100 keV electrons, and Vg/E is even smaller 
for the other Fourier coefficients, two approximations are 
justified which simplify the dispersion-surface construction. 
The first is the n-beam approximation in which one takes a 
finite number of beams, thereby restricting A to n x n, and 
one avoids taking the limit n --, m. The important beams are 
determined by the usual Ewald-sphere construction. Once 
any and all strongly diffracted beams are included, there is 
rapid convergence of the non-negligible beam intensities 
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with n, as n becomes large; consequently, it is reasonable to 
use a finite n. The second approximation is a linearization 
which is accomplished by replacing the square-bracketed 
term in (3) by 1. In order to see that this is justified, 
consider the exact solution to de t (A)= 0 in the one-beam 
case (n = 1). It is 7--Z~ + (,Zz 2 --u0) 1/2. We may neglect the 
plus sign in this equation, since it represents backscattering, 
and write the solution as y =  (Uo/2Zz)[1 +O(vo/E)l. 
Linearization neglects the O(vo/E ) correction. When n > 1, 
linearization is justified for the same reason because the off- 
diagonal elements A are of the same magnitude (ug/Zz) as 
the diagonal elements we have just discussed. 

These two approximations are well known, but they are 
usually implemented with the additional restriction gz = 0. 
Our point here is that this latter restriction is not necessary 
for sufficiently thick specimens. For extremely thin 
specimens, where the electrostatic potential of the crystal in 
the z direction cannot be described by a Fourier series, 
presumably a Born approximation treatment would be 
sufficient. 

Thus, under these approximations, the dispersion surface 
is determined by the solution to 

det [A' -- 7(j')I] = 0 (4) 

where 

A,gh=,_2~ +K2- (Z ~gh + (1 -- ~gh) 2(Z+ g)z 

In summary, (4) gives a simple extension of the 
usual formulation of transmission high-energy electron 
diffraction (Sturkey, 1962) to higher-order Laue zones. The 
only difference is that here we allow the vector g to range 
over the Laue zones of interest. 

We thank one of the referees for some useful comments 
which we have incorporated into the discussion. 
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If ionic radii are calculated so as to predict accurately mean interatomic distances, then the relationship between cell 
volume and the cube of the cation radius for a series of isotypic compounds is non-linear. 

It has been noted by several authors (Shannon & Prewitt, 
1969; Shannon, 1975) that in the highly symmetric structure 
types, such as the rocksalt, fluorite and perovskite structures, 
the mean bond lengths calculated by summation of the 
effective ionic radii deviate from the observed values in a 
systematic manner. In general, the observed bond lengths are 
significantly greater than the calculated values for small 
cations; these deviations diminish as the size of the cation 
decreases, and actually become negative for the oxides EuO, 
SrO and BaO with the rocksalt structure. Shannon & 
Prewitt (1969) suggest that these discrepancies may be the 
result of decreased repulsion effects between nearest- 
neighbour anions due to the highly symmetric nature of the 
polyhedra. 

Another characteristic of the highly symmetric structure 
types is their non-linearity on a type I stability diagram 
(Shannon & Prewitt, 1970a). The majority of plots of unit- 
cell volume vs r 3 (the cube of the cation radius) for isotypic 
structures are linear to a first approximation, and this has 
been used both for confirmation of unit-cell volumes and 
for the calculation of ionic radii (Prewitt & Shannon, 1969; 
Shannon & Prewitt, 1970b). However, Fukunaga & Fujita 
(1973) and Shannon (1975) have shown that this type of plot 
is non-linear for the rocksalt, corundum, BaM4+O3 and 
SrM4+O3 perovskites and Sm2M~+O7 pyrochlore structures, 
and we encountered the same non-linearity in an examination 
of the ~;arnet structures. In addition, Shannon (1975) has 

noted that it is possible that all such plots show this non- 
linearity, but that it is only noticeable when the structure type 
is stable for a wide range of cation radii. 

With regard to these two points, it is instructive to 
examine the rocksalt structure in a little more detail. The 
cation occupies the 4(a) position at 0,0,0 and the anion 
occupies the 4(b) position at ½,0,0. Thus the cell edge, a, may 
be written in terms of the bond length, l, as a = 2l. If ionic 
radii are calculated so as to reproduce interatomic distances, 
then 

l ~ /'cation + ranion 

and the cell volume may be written as 

v = [2(reation + ranion)] 3 

Hence the cell volume is not a linear function of the cube of 
the cation radius. Fig. 1 illustrates this for the M2+O rocksalt 
structures, and shows the relationship between cell volume 
and the cube of the cation radius, where the full line indicates 
the ideal relationship, the broken line shows the linear re- 
lationship indicated by Shannon & Prewitt (1970a) and the 
data points are plotted using the cation radii of Shannon 
(1976). As suggested by Shannon (1975), the non-linearity 
exhibited by Fig. 1 is only apparent over the whole range of 
cation radius values, and would not be apparent over a 
reduced range of values. 

Similar arguments may be developed for other cubic 


